
www.ramoncasares.com 20101127 RLispManE 1

RLisp: User Manual

1 Introduction
RLisp is a Java package to create Java objects and execute its methods in runtime.

It is, then, a Java interpreter. But, because this interpreter implements a whole Lisp
machine, we can also say that RLisp is a Lisp interpreter running on the Java semantics.

2 License
RLisp is open and free software, under the GNU General Public License. RLisp is

copyright by Ramón Casares.

3 The Files
RLisp is distributed in four (or three) files:

• RLisp.jar is the program, and the only one required.
• RLispManE.pdf is this document that you are reading.
◦ RLispManS.pdf is the Spanish version of this document.
• RLispCode.pdf is a document where you can find the whole source code in a human

readable form, and it is, therefore, RLisp conclusive specification.

If you want to access the other three documents from the RLisp program in runtime,
then the four files should be located in the same directory. If you want to hack RLisp,
you will find the source code files, files with java extension, inside the RLisp.jar file.

4 The Machine

To run RLisp you will need a computer with a Java virtual machine (JVM) installed.
RLisp works with the JVM that is part of Sun’s Java Runtime Environment (JRE)

version 1.4.2. You can download the JRE from its official home in Internet. It will surelly
work with newer versions, and possibly work with older versions, but I am not sure.

5 Starting

To start RLisp you will have to call the Java virtual machine and instruct it to run
the code in file RLisp.jar. That’s all.

In Windows, the command is:
java.exe -jar RLisp.jar

http://www.gnu.org/
http://www.ramoncasares.com/
http://www.sun.com/
http://java.sun.com/j2se/1.4.2/download.html

www.ramoncasares.com 20101127 RLispManE 2

6 The Main Window (The Yellow Window)
If everything goes right, then the RLisp main window, also known as the yellow

window, will be open. There are three parts in the main window that are, from top
down: a toolbar, that we will explain in the next sections; a big yellow text area where
every action and reaction will be noted, that we will explain in this section; and a status
line, where RLisp will show some additional information.

In the big yellow text area, every command to and every result from RLisp will be
written, one in each line. Command lines will begin with the pair of characters “<<”, and
lines showing the results will begin with “>>”. For example:

<< (new RLisp.RPair (string (1 2 3)))

>> (1 2 3)

The first line in the example shows that we have asked RLisp to build a new object of
class RLisp.RPair using the constructor RPair(String) and, as argument, the String

(1 2 3), including parentheses. The second line is the answer from RLisp showing the
new object. You can give the new object a name to add it to the object dictionary so it
will be available later on. We will see that there are several ways to do this, but in any
case, if we choose list123 as its name, this action will be set down in the main window
as shown:

<< (def list123 @)

>> list123

If we now want, for example, to know the class of the named object, then the note
would be:

<< (method list123 ’getClass)

>> class RLisp.RPair

www.ramoncasares.com 20101127 RLispManE 3

7 The Toolbar

The toolbar has four sections:
• File to open data sources and sinks, as the log files, the tree, and the keyboard.
• Edit to cut, copy, and paste.
• Action to execute Java access operations (path), or operations to read and execute

Lisp code files (Lisp code), or operations related with the object dictionary (name,
unname, list).

• Help to access the documents.

The toolbar whole structure is as follows:

Tool bar

File

Load

Load from

Save

Save to

—
Tree

Keyboard

Session

—
Close

Edit

Cut

Copy

Paste

Action

Path

Lisp code

—
Name

Unname

List

Help

Manual (User Manual)
Spanish Manual (Spanish Version)
Code (RLisp Source Code)
About RLisp

www.ramoncasares.com 20101127 RLispManE 4

8 The Log Files

The log is a book in which the record of a ship’s speed, its progress, and any shipboard
events of navigation is kept. To record the events happening when using RLisp we employ
the log files. For convenience, log files should have a log extension, though the code does
not requires it nor verifies it, but only makes using it easy.

RLisp logs are text files. This means that they can be created with any text editor,
such as Unix’ emacs or Windows’ notepad. If you use instead a word processor, for
example MS Word, then you will have to save it as text, that is, without any control
code. But, the easiest way to create a log file, is to let RLisp to do it.

If you stroke File-Save to, that is, if you choose the option Save to after having
selected File in the toolbar, then RLisp starts an explorer to select a file name and a
location in your computer to be used as a log file. From this point in time on, every piece
of information shown in the main window will be also written to the selected log file.

The default log file is file RLisp.log in the current directory. This means that if
you execute File-Save, then RLisp assumes that the log file is RLisp.log in the current
directory, and it does not requires any other data.

The information saved to a log file can also be read. If you execute File-Load from,
then RLisp starts an explorer to choose a file. By default, only directories and files with
the log extension are shown, but you can instruct RLisp to show all files. If you want to
read the file RLisp.log in the current directory, then you should execute File-Load. In
any case, once the file is selected, RLisp starts processing the log file.

Log file processing is easy. If the three first characters of a line are not “<< ” (the
third one is a space), then RLisp just writes the line to the main window. If, contrarywise,
the first three characters of a line are in fact “<< ”, then, RLisp writes the whole line in
the main window and, in addition, it executes the rest of the line and writes the result in
the main window. The result is written in a single line in which the three first characters
are “>< ”, and then goes the result. The information written in the main window while
processing a log file is not written to any log file, and this is the only exception to the
rule.

When you call RLisp, you can append the name of a log file to be processed at start.
By default none is processed.

java.exe -jar RLisp.jar filename.log

www.ramoncasares.com 20101127 RLispManE 5

9 The Tree (The White Window)

If you execute File-Tree, then RLisp starts an explorer to choose a directory or a
jar (Java archive) file. When you select one, RLisp opens a window with the tree of all
classes (files with the class extension) that are accesible from it.

Please be aware that you should follow the Java access rules, so if a class is defined in
a package, then the class is not accessible from the directory in where the class is located,
but from one which is up in the hierarchy. For example, if class MyClass is defined in

package MyApplication;

then the file MyClass.class should be in a subdirectory named MyApplication of
a certain directory, and it is from that certain directory from which the class MyClass is
accessible.

For each class there are up to four branches:
• Array to create a unidimensional array of objects of this class. This branch is always

present.
• Fields to access, and modify if it is not final, a field of the class.
• Constructors to create an object of the class.
• Methods to execute a method of the class.

Each of the four main branches, except Array, has a number of subbranches. In
branch Fields there is a subbranch for each and every accesible field of the class, be it
static or not, be it declared in it or inherited from a superclass. In branch Constructors

there is a subbranch for each and every constructor in the class. And in branch Methods

there is one subbranch for each and every method of the class.

Once a subbranch is chosen, you should press the OK button to execute the action
associated to the subbranch. Depending on the subbranch selected, RLisp could ask you
for additional data. For example, if you have chosen a non-static method subbranch,
then RLisp will ask you to select an object between the named objects of the chosen
class, and a named object of the corresponding class for each of the arguments of the
chosen method. In each case, instead of a named object, you can enter a Lisp expression
that RLisp will evaluate.

The executed command will be shown in the yellow main window à la Lisp. The
command in one line that starts with “<<”, and the result with the textual representation
(toString()) of the resulting Java object, in the next line stating with “>>”. The
resulting object can be named pressing the Name button in the tree window, or executing
Action-Name from the toolbar, or, as we will explain in the next section, writting the
command (def name @) in the keyboard, where @ is the RLisp way to refer to the last
resulting object, and name is the name we want give it.

www.ramoncasares.com 20101127 RLispManE 6

10 The Keyboard (The Green Window)

When you execute File-Keyboard, RLisp opens a green window to enter text. This
way you can ask RLisp to execute any command from the keyboard. These commands use
the lispian syntax. In the section titled “Lisp”, we will explain in detail what commands
do obey RLisp.

The green window keeps the record of the written parentheses, so when all of them
are closed (i.e., paired) and you type the end of line (return key), then it sends the whole
expression to the main console where it is interpreted.

You can also ask the execution of an expression from the keyboard using its toolbar
buttons. They refer to the cursor current location. For example, when pressing the
Maximum button, the longest expression surrounding the cursor location is executed. If
you press the Minimum button, then it takes the shortest expression to execute. The Word

button selects only the word in which the cursor currently is, so, in general, RLisp only
task will be to look up the word definition in the dictionary. The Previous and Next

buttons refer to the previous and to the following expression. The only button not asking
to execute an expression is Nesting. This button is used to ask RLisp to calculate the
cursor position nesting level, which is shown in the keyboard status bar located in the
lower part of the green window.

11 The Session

If you execute the command File-Session, then RLisp will only accept commands
written in the system console. To return to the normal mode of operation, you will have
to write quit in the system console.

12 To Close

Executing File-Close in the toolbar, you close any open file managed by RLisp, and
finish RLisp. Another way to quit RLisp is closing the main window. And yet another
one is to execute from the keyboard the command:

quit

Lastly, if processing a log file the following line is found:
<< quit

then RLisp is also closed.

13 To Edit

In the Edit section of the toolbar you can find the usual commands to Cut, Copy,
and Paste. They are used to transfer information between aplications.

www.ramoncasares.com 20101127 RLispManE 7

14 The Path

The Action-Path command opens an explorer to select a directory. Once selected,
the Java ClassLoader can access the classes that are accessible from the directory. All
of the warnings written in the Tree section concerning class accesibility apply again to
this case.

To execute this action from Lisp, where URL is the directory, type:
(path URL)

15 Lisp Code

When you execute Action-Lisp code, RLisp opens an explorer to select a file. By
default this explorer only shows the files with extension lisp, though you can instruct
it to show all of the files. Once a file is selected, RLisp executes each and every Lisp
expression in the file.

You can execute this action in Lisp, where URL is the file, typing:
(load URL)

16 To Name

If you want to give the current object a name, you can use the Action-Name command.
The current object is the object shown in the last line of the main window. After naming
an object, we can refer to it by its name, being this way accessible.

The Lisp equivalent to this action, where @ is the way used in RLisp to refer to the
last result and name is the name we want to give it, is:

(def name @)

17 To Unname

If you want that a named and accessible object stops being so, then you should use
the Action-Unname command. You will be then presented a list with all the named
objects to choose one of them.

The same action can be performed in Lisp, where name is the unnamed name, doing:
(set! name)

18 To List

The Action-List command shows in the main window each and every named object,
with its Java class and its textual (toString()) representation.

To get the class of an individual object, you can use the Lisp command:
(method object ’getClass).

www.ramoncasares.com 20101127 RLispManE 8

19 User Manual
To know the name of this document, you can execute the Help-Manual command.

And to know the name of the Spanish version of this document, you can execute the
Help-Spanish Manual command. If RLisp is run in a Windows environment and both
files, RLispManE.pdf (or RLispManS.pdf) and RLisp.jar, are in the same directory, then
the predetermined action is executed on the pdf file. The usual predetermined action on
a pdf file is to open it with the Adobe’s Acrobat Reader.

20 The Source Code
To know the name of a document where you can read the source code of RLisp, you

can execute the Help-Code command. If RLisp is run in a Windows environment and both
files, RLispCode.pdf and RLisp.jar, are in the same directory, then the predetermined
action is executed on the pdf file. The usual predetermined action on a pdf file is to open
it with the Adobe’s Acrobat Reader.

21 About RLisp
The command Help-About RLisp shows you the version of RLisp that you are run-

ning, the copyright, and the name of its author, that is, my name. If you don’t like RLisp,
you can write me; if you don’t dislike it, you can also write me!

22 Lisp
In this section we will explain the main characteristics of our Lisp. Note that you

can use RLisp without writting a single line in Lisp; just inside the tree window you can
create Java objects, you can give the crated objects names, you can execute the created
objects methods, and you can see the results. So, in this working mode, Lisp is just a
syntax to note the session events. But using Lisp the possibilities of RLisp are enhanced
enormously.

22.1 Scheme

Scheme is the Lisp variant we have chosen to develope the RLisp Lisp. So we will
explain the differences between our Lisp and Scheme. Scheme, being a well known Lisp
dialect, will not be explained here.

22.2 Tail recursivity

The main conceptual difference is that, while Scheme is tail recursive, our Lisp is not.
And this is so because Java (or more preciselly the Java compiler) is not tail recursive. If
some tail recursive Java compiler were developed, then we should revise the RLisp code
in order to conform it to the compiler requirements.

22.3 Improper Lists

Improper lists, or pairs, that are noted with a dot (“.”) in Scheme, are noted with
a comma (“,”) in our Lisp. The reason behind this difference is that in Java we use the

http://www.adobe.com/
http://www.adobe.com/
http://www.scheme.org/

www.ramoncasares.com 20101127 RLispManE 9

dot to refer to objects, and this is a very frequent operation in RLisp. For example, to
refer to a class method we have to write the class name, a dot, and the method name.
In addition, the comma is used in Mathematics to express pairs, (car,cdr), so it is the
most natural replacement for the dot.

22.4 Pair Assignment

Our Lisp assigner is very powerful. The primitive operation to give an object a name
in our Lisp is def:

(def name object)

where name is not evaluated, object is evaluated, and then:
• If name is not a pair, that is, if (atom? name) is t (for true), then the name name

is added to the current dictionary with object (evaluated, as we have said) as its
meaning.

• If name is a pair and object (evaluated) is also a pair, then def is transformed in
two defs, and so on recursively:
(def (car name) (car object))

(def (cdr name) (cdr object))

• Lastly, if name is a pair, but object (evaluated) is not a pair, then no assignment
takes place.

The primitive to change a name meaning is set!, and works with respect to pairs the
same way as def works. The name should be already defined, otherwise set! do nothing.

(set! name object)

If you omit object, (set! name), then name gets undefined.

22.5 Atom Evaluation

If a name was already defined, and it was not undefined, then it evaluates to its
definition. If a name is a primitive name, then it evaluates conforming to the primitive
meaning. Any other name is the name of itself, that is, it evaluates to the String literal
that is itself (three evaluates to the five characters String “three”, and 12 to the String
“12”), so in our Lisp all atoms are evaluable.

22.6 The Syntactic Primitives: Lisp
RLisp is minimalist, and it only employs the following syntactic primitives:

• quote is as in Scheme (and the single quote “’” is also its abbreviation).
• eval is as in Scheme.
• def and set! are as explained above.
• cond and eq?, where cond is as in Scheme, except that there is not else (but you

can use t instead), and where eq? is as equal? in Scheme.
• cons, car, and cdr are as in Scheme, but (cons) evaluates to nil and (cons 1) to
(1).

• atom? is as in Scheme.
• lambda is as in Scheme, but it employs, when asigning formals to actuals, all of the

assigner power.

www.ramoncasares.com 20101127 RLispManE 10

• rho is the way to create new special forms to extend the syntax. We will explain it
in the next section.

22.7 The extensions

To create new special forms and syntaxes in our Lisp, we will employ rho. To evaluate
the rho-expression:

((rho name expander) expression)

RLisp evaluates first:
(expander ’(name expression))

And then it evaluates the result.

22.8 Initial Definitions

When RLisp starts, it loads the file RLisp.lisp, which is located inside the file
RLisp.jar. In this file other known Lisp names are defined: nil, t, null?, not, list,
cadr, macro, syntax, define, if, sequence, or, and, mapcar, let, GENV, Gdefine. You
can browse this file to see some examples of rho usage, though hidden behind syntax.
An easy way to extend RLisp is to add definitions to this file, or to the files called by
this one, which are also inside RLisp.jar. We will see these files below.

22.9 The Semantic Primitives: Java

Our Lisp can access Java objects. In order to do this, it provides the following seven
semantic primitives:
• (string that is all) evaluates to the Java String "that is all".
• (new cl arg0 arg1 ...), where arg is ob or (cons ’Class ob), evaluates to a

new Java object of class cl, using as arguments arg0, arg1, etc.; please see further
details below.

• (method [cl | ob] mt arg0 arg1 ...), where arg is ob or (cons ’Class ob),
evaluates to the result of executing the method mt of object ob, or of class cl (which
then should be static), using as arguments arg0, arg1, etc.; please see further details
below.

• (field [cl | ob] f [val |]) evaluates to the current value of field f of object
ob, or of class cl. If the optional val is present, then the new value of the field f is
val.

• (array cl ob0 ob1 ...) evaluates to a new array of class cl objects, initialized
with objects ob0, ob1, etc.

• (path URL), already seen.
• (load URL), already seen.

In primitives that use a list of arguments, which are new and method, you will need
to indicate the class of an argument, using variant (cons ’Class ob), when you want
to cast the object ob to a superclass of its proper class.

This happens, for example, when using a constructor or a method with an argument
of class java.lang.Object, as equals(java.lang.Object), because, in spite that every

www.ramoncasares.com 20101127 RLispManE 11

Java object belongs to some subclass of that class, none of them belongs to it. So,
assuming that both object1 and object2 belongs to a class that only defines equals

that way, then to call the method we should write:
(method object1 ’equals (cons ’java.lang.Object object2))

Something similar happens when we need to use the value null. While null can be
the value of any class, it does not properly belong to any class, and therefore its class,
void, does not appear in the signature of any constructor nor any method. For this reason
we should cast the value of null using the (cons ’Class (car nil)) variant. Note that
Java null cannot be included in the dictionary, so you should use a Lisp expression, as
(car nil), to get the null.

22.10 Other Initial Definitions

In file RLispJava.lisp, which is called by RLisp.lisp, eight functions to get values
of the eight basic types of Java are defined. You can use them like this: (boolean

false), (char c), (byte 5), (short 233) (int -12), (long 1234567), (float 1.4),
(double 4.234567e4).

In file RLispMaths.lisp, also called by RLisp.lisp, the basic arithmetics func-
tions are defined: addition (+), substraction (-), multiplication (*), quotient (/), and
remainder (%); and two conditions: equal to (=), and greater than (>). It employs
java.math.BigInteger numbers, and expression (# 4) evaluates to the BigInteger

number 4. If you need another type of arithmetics, you should redefine this file.

In file RLispArray.lisp, also called by RLisp.lisp, the following functions to work
with Java arrays are defined: (isArray? o), (array-length a), (array-get a i),
(array-set! a i v); where o is any Object, a an Array, i an int used as index, and
v (for the new value) an Object. To create an array you can use the semantic primitives
(array cl ob0 ob1), which creates a unidimensional array of length two initialized, or
(new cl[] dim1 dim2), which creates a bidimensional array, sized dim1 × dim2, not
initialized (that is, initialized to null values).

	 RLisp: User Manual
	1 Introduction
	2 License
	3 The Files
	4 The Machine
	5 Starting
	6 The Main Window (The Yellow Window)
	7 The Toolbar
	8 The Log Files
	9 The Tree (The White Window)
	10 The Keyboard (The Green Window)
	11 The Session
	12 To Close
	13 To Edit
	14 The Path
	15 Lisp Code
	16 To Name
	17 To Unname
	18 To List
	19 User Manual
	20 The Source Code
	21 About RLisp
	22 Lisp
	22.1 Scheme
	22.2 Tail recursivity
	22.3 Improper Lists
	22.4 Pair Assignment
	22.5 Atom Evaluation
	22.6 The Syntactic Primitives: Lisp
	22.7 The extensions
	22.8 Initial Definitions
	22.9 The Semantic Primitives: Java
	22.10 Other Initial Definitions

